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Current unsupervised temporal action localization (UTAL) methods mainly use clustering and localization
with independent learning mechanisms. However, these individual mechanisms are low-coupled and struggle
to finely localize action-background boundary information due to the lack of feature interactions in the
clustering and localization process. To address this, we propose an end-to-end Hierarchical-Contrast UTAL
(HC-UTAL) framework with high-coupling multi-task feature learning. HC-UTAL incorporates coarse-to-fine
contrastive learning (CL) at three levels: video level, instance level and boundary level, thus obtaining adaptive
interaction and robust performance. We first employ the video-level CL on video-level and cluster-level feature
learning, generating video action pseudo-labels. Then, using the video action pseudo-labels, we further devise
the instance-level CL on action-related feature learning for coarse localization and the boundary-level CL
on ambiguous action-background boundary feature learning for finer localization, respectively. We conduct
extensive experiments on THUMOS’14, ActivityNet v1.2, and ActivityNet v1.3 datasets. The results demonstrate
that our method achieves state-of-the-art performance. The code and trained models are available at: https:
//github.com/bugcat9/HC-UTAL.

1. Introduction performance, existing methods typically employ a two-stage learn-
ing framework involving clustering and localization. Gong et al. [8]
introduced the unsupervised Temporal Co-Attention Model (TCAM)
that first incorporates a clustering algorithm to divide videos into
different groups and then employ an attention mechanism to locate
action instances. Liu et al. [9] proposed Action-positive Separation
Learning (APSL) for UTAL. APSL introduced an CL loss for action
feature separation learning, obtaining the salient action features to
improve the localization performance. In addition, with the rise of large
vision-language models or large vision models recently, the advantages

Temporal action localization (TAL) in videos is a challenging task
in multimedia analysis and mining [1,2]. It involves identifying and
localizing action instances within untrimmed video data [3,4]. TAL
has numerous applications in real-life multimedia intelligence anal-
ysis and management, such as video summarization, video highlight
detection, video content retrieval, multimedia content understanding,
etc. [4,5]. Recently, deep convolutional neural networks (DCNNs) [6]
have achieved promising TAL results, but they require a large amount
of annotated data for model training. Annotating TAL data is known

to be a labor-intensive and time-consuming process. For example, it
can take an experienced annotator approximately 3-5 min to annotate
action instances in a 1-minute video [7]. Hence, enabling DCNN models
to learn from unlabeled action videos, which are easier to collect,
has become important for multimedia intelligent applications, such as
resource-efficient video annotation [5], surveillance and security [4],
etc.

Recently, unsupervised TAL (UTAL) on unlabeled action videos has
garnered increased interest from researchers [8,9]. To achieve UTAL
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of large models could be enhanced with an UTAL method. Despite
achieving the progress, the UTAL task can be extremely challenging
due to two primary obstacles below: (1) Low-Coupling learning. As
shown in Fig. 1(a), clustering and localization employ distinct learning
mechanisms with minimal interaction, presenting a challenge for effec-
tively mining semantic features related to video actions. (2) Ambiguous
action-background boundaries. Due to the lack of effective supervision,
UTAL methods often struggle to distinguish action boundaries from the
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Fig. 1. The motivation of our method. (a) and (b) show the frameworks, action clustering and localization results for the current method and our method, respectively. Unlike the
current low-coupling clustering and localization learning process in the two-stage approach, which does not consider feature interactions, our HC-UTAL is a unified CL learning
process, which enables pseudo-labels and action-related features to be learnt interactively in a high-coupling manner at each CL level, resulting in more accurate UTAL results. It
is worth noting that both action clustering and localization in (b) are more accurate than (a). For instance, the red dashed box in (a) indicates the incorrect localization result of
TCAM, while the green dashed box in (b) indicates the correctly localized boundary result. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

background, as the minimal differences between them make precise
localization challenging.

To tackle the above-mentioned limitations, leveraging the powerful
self-supervised and unsupervised learning capabilities of contrastive
learning (CL) [10,11], we introduce a novel three-layer coarse-to-fine
contrastive learning (CL) framework for the first time. This framework,
termed Hierarchical-Contrast UTAL (HC-UTAL), employs high-coupling
feature interaction learning at the video, instance, and boundary levels
to achieve effective UTAL performance. In this work, the high-coupling
mechanism in HC-UTAL strengthens the connection between cluster-
ing and localization through hierarchical contrastive learning at the
video, instance, and boundary levels. This approach facilitates both
label transmission and feature sharing, promoting adaptive feature
interaction and enabling more precise delineation of action-background
boundaries. Fig. 1 presents an intuitive motivation and the results of
HC-UTAL. Unlike existing two-stage UTAL methods that typically in-
volve two distinct, loosely coupled learning stages for obtaining action
pseudo-labels and semantic features, our HC-UTAL framework simul-
taneously and efficiently facilitates interactive learning between these
processes through an elaborated high-coupling approach. Additionally,
the integrated three-layer CL mechanism collaborates adaptively to
extract multi-level semantic features from coarse to fine, effectively
discovering ambiguous action-background boundary information and
enhancing the robustness of UTAL performance.

More specifically, in video-level CL, we first employ bi-directional
CL mechanisms: horizontal CL learns video-level features, while vertical
CL clusters video groups to generate video action pseudo-labels. Then,
with the generated pseudo-labels and video-level features, instance-
level CL introduce a contrast loss to separate action-related and un-
related features, ensuring the former are tightly clustered while the
latter are well-separated, enabling coarse action clip localization. While
the video-level and instance-level CL enhance UTAL performance, am-
biguous action-background boundaries (discussed in Fig. 4) can impact
localization accuracy. To address this, we propose a boundary-level
CL component, which extracts finer-grained boundary information.
To ensure seamless collaboration across these learning processes, we
implement an adaptive multi-task weighting mechanism for end-to-end
interaction among video-level, instance-level, and boundary-level CLs,
improving both robustness and overall UTAL performance.

In general, the major contributions of this paper are as follows:

(1) We introduce HC-UTAL, a novel coarse-to-fine contrastive learn-
ing framework that captures fine-grained multi-level semantic
features through highly coupled multi-task learning. As the first
hierarchical CL framework in UTAL, HC-UTAL achieves state-
of-the-art performance in weakly supervised and unsupervised
temporal action localization on THUMOS’14, ActivityNet v1.2,
and ActivityNet v1.3 datasets.

(2) In video-level CL, we introduce bi-directional mechanisms: hor-
izontal CL for video-level action learning and vertical CL for
cluster-level feature learning. Together, these mechanisms gen-
erate action pseudo-labels for each untrimmed video.

(3) In instance-level CL, we use contrast loss to align action-related
features with the same pseudo-labels while separating unrelated
features, enhancing coarse action localization. At the boundary
level, we introduce joint learning objectives for non-boundary
and boundary feature learning to improve fine action and back-
ground boundary localization.

(4) We introduce an adaptive multi-task weighting mechanism that
integrates video, instance, and boundary-level CL. This innova-
tive approach enables strong interactions and mutual reinforce-
ment, enhancing the precision of action category identification
and proposal generation.

2. Related work
2.1. Temporal action localization

TAL aims to identify the temporal intervals of specific actions in
untrimmed videos. Most existing works fall into two categories: fully
and weakly supervised methods.

Fully supervised TAL methods mainly use frame-level annotations
to generate and classify temporal action proposals [5]. For example,
GTAN [12] uses Gaussian kernels to optimize the generation of pro-
posals. Recently, graph neural networks have also been utilized to
explore the relationships between action proposals with frame-level
supervision.

Weakly supervised TAL methods require video-level annotations to
locate the action instances in videos. For instance, UntrimmedNets
addresses it with Multi-Instance Learning (MIL) approach. W-TALC [3]
obtains action proposals by using metric learning to make similar action
features closer to each other. FC-CRF [13] finds new foreground clips
progressively via step-by-step erasion from a complete input video.
HAM-Net [14] proposes mixed attention weights to localize complete
action instances through multiple parallel and complementary branch
learning. CoLA [15] utilizes snippet contrastive learning to improve
localization results. FTCL [16] utilizes two complementary modules:
Fine-grained Sequence Distance (FSD) contrasting and Longest Com-
mon Subsequence (LCS) contrasting. FSD examines the relationships
between action and background proposals, while LCS identifies the
longest common subsequences in videos. These modules synergistically
enhance each other, improving action-background separation and ad-
dressing the classification-localization task gap. LSBF [17] introduces
the first anchor-free TAL method, by employing novel boundary pool-
ing to enhance proposal features, and several consistency constraints to
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Fig. 2. The training pipeline of the HC-UTAL for unsupervised temporal action localization. Using the untrimmed video input, we apply three hierarchical CL, namely video-level

CL, instance-level CL, and boundary-level CL, for obtaining the action categories and

action localization proposals in a coarse-to-fine multi-task learning manner. Furthermore,

these three hierarchical CL can be learned iteratively in an end-to-end and mutually reinforcing manner.

ensure accurate boundary detection for arbitrary proposals.

Compared with existing methods, HC-UTAL adopts a completely dif-
ferent learning mechanism to separate action and background bound-
ary features through a hierarchical contrastive learning method without
any annotation information. At the video level, traditional methods
usually rely on the relationship between different clips in the same
video to improve the positioning accuracy, ignoring the extraction
of cluster-level features of different videos. This limitation hinders
the model’s ability to capture common action information between
different videos. In addition, at the instance level, most past methods
use attention mechanisms to distinguish foreground and background
actions, thereby improving the accuracy of action localization. How-
ever, these methods often ignore the distinction between action-related
features and irrelevant features, which may cause action-related fea-
tures to be mixed with background information, making it difficult
to accurately locate action instances. Overall, weakly supervised TAL
relies heavily on video-level action labels. Annotating action categories
for large amounts of untrimmed video is challenging and costly [7].

2.2. Unsupervised temporal action localization

An increasing number of recent research efforts focus on the task
of UTAL as it does not rely on any video annotations [8]. For in-
stance, TCAM [8] proposes the first unsupervised action localization
method with a two-step “clustering + localization” iterative procedure.
However, TCAM introduces noise from raw videos while using the
overall video features for two individual clustering and localization
procedures. To address this issue, APSL [9] introduces an iterative
process of feature separation, clustering, and localization for the UTAL
task. APSL improves the TCAM method by utilizing separation learning
to extract important action features for clustering and localization.

Although the APSL is our previous work, we would like to clarify
that there are significant differences between the HC-UTAL and APSL.
Firstly, they do not share the same motivation. The motivation of
APSL is to improve clustering and localization by separating salient
action features through feature separation. while the motivation of HC-
UTAL is to address the issues of low-coupling learning and boundary
problems in UTAL. Secondly, the learning mechanisms of HC-UTAL
and APSL are significant different. HC-UTAL employs a multi-level CL
for video-level, instance-level and boundary-level feature learning in
both action clustering and localization, while APSL uses two separated
learning stages with the spectral clustering algorithm and contrastive
learning for action localization. Thirdly, both APSL and TCAM require
knowledge of the number of clusters during training, whereas our HC-
UTAL treats it as a hyperparameter with enhanced adaptive learning
capability.

2.3. Contrastive learning

Another recent advancement in vision and multimedia tasks is
to use contrastive learning (CL) in self-supervised and unsupervised
manners [10,11]. CL aims to map features of samples onto a unit
hypersphere such that the feature distances of the positive sample pairs
on the sphere are similar while the feature distances of the negative
sample pairs are pushed apart. Popular CL-based methods, such as
SimCLR [10] and MoCo [11], often use InfoNCE loss to learn a latent
representation that is beneficial to downstream tasks. SimCLR [10]
proposes a negative sample selection scheme by using the augmented
views of other items in a minibatch during training. MoCo [11] uses
a momentum-updated memory bank of old negative representations
to remove the batch size restriction and enable the consistent use of
negative samples. Furthermore, several works propose to deploy CL
for video understanding tasks [18]. For example, Pace [19] uses video
clips of the same action instance but with different visual rhythms to
construct positive sample pairs for CL. SeCo [20] uses different frames
from the same video to construct positive samples. Lastly, IIC [21]
and CVRL [18] use different clips from the same video as positive
samples. In summary, most approaches to CL-based video-related tasks
implement CL by constructing sample pairs from different segments of
the same video.

3. Methodology

The overall architecture of HC-UTAL for unsupervised temporal ac-
tion localization (UTAL) is illustrated in Fig. 2, which consists of three
hierarchical contrastive learning (CL) mechanisms: the video-level CL,
instance-level CL, and boundary-level CL. Unlike current UTAL methods
that mainly employ different learning schemes for action category clus-
tering and action proposal localization, individually, our HC-UTAL is
an end-to-end multi-level CL mechanism in a high-coupling multi-task
manner, thereby enhancing multi-level semantic representations from
coarse to fine, for improved performance in UTAL. In the following
sections, we first provide details on each learning stage of the HC-UTAL
approach, then describe how HC-UTAL is utilized for UTAL. Finally, we
present the inference pipeline for obtaining action position proposals in
untrimmed videos.

3.1. HC-UTAL pipeline

3.1.1. Overview

To better describe our method, we first formulate the HC-UTAL
pipeline. In HC-UTAL, we first employ the video-level CL to generate
video pseudo-labels for each unlabeled video by introducing horizon-
tal and vertical CL for video-level and cluster-level feature learning,
respectively. After obtaining the video pseudo-labels, we employ the
instance-level CL to extract action-related features (same pseudo-label)
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Fig. 3. The implementation pipeline of the video-level CL. Through properly video-level pair augmentation, the video-level CL employs two parallel CL mechanisms, namely

vertical CL and horizontal CL, to generate video pseudo-labels.

and action-unrelated features (different pseudo-label) from the video-
level features. This learning process encourages action-related features
to be brought closer together while also pushing action-unrelated fea-
tures apart, thus achieving coarse action localization. Furthermore,
to address the challenge of capturing action-background boundary
features in videos, we further devise the boundary-level CL on finer
boundary semantic representation learning, thereby augmenting the
performance of action proposal localization.

Formally, taken unlabeled videos as input, our HC-UTAL employs
three-level distinct CL losses, i.e., video-level CL loss denoted as Ly ¢y,
instance-level CL loss denoted as L;;, and boundary-level CL loss
denoted as Lpc;, to learn fine-grained multi-level semantic features
from its input, respectively. Therefore, our overall pipeline of HC-UTAL
can be described by:

Lyc_yrar =aLlycp+PLicp +vLper (€Y

where a, f and y are three dynamic weights to adaptively balance
the coarse-to-fine learning objectives in the multi-task learning man-
ner according to their contributions. To facilitate high-coupling in-
teractions and mutual reinforcement among these three-level learning
schemes, we employ the Dynamic Weight Average (DWA) to obtain
these three parameters during training. We also show in the experi-
ments that adding the dynamic weight learning improves performance
(see Table 6), demonstrating the usefulness of adaptive cooperation
of three-hierarchy CL schemes. By adaptively optimizing these three
losses, HC-UTAL extracts more discriminative multi-level semantic fea-
tures for robust UTAL performance in unlabeled videos. The details of
each level CL in HC-UTAL is described below.

3.1.2. Video-level CL

To generate video pseudo-labels for guiding action proposal local-
ization, the video-level CL aims to learn both video-level features and
cluster-level features, where video-level features contain per video-
specific action information and the cluster-level features encompass
common action information. To this end, we devise two directional CL
mechanisms, namely horizontal CL and vertical CL. The horizontal CL is
utilized to learn video-level features, while the vertical CL is designed to
learn common cluster-level features that can be used for the generation
of action pseudo-labels. As the pipeline of the video-level CL shown in
Fig. 3, we first construct video-level sample pairs and then execute the
horizontal CL and vertical CL in parallel.

Video-level Pair Augmentation. Inspired by [22], we employ a video-
level sample pair augmentation method, which consists of horizontal
pair augmentation and vertical pair augmentation, as depicted in Fig. 3.

We denote an unlabeled video set in a training batch as ¥V = {V; }’ iy
where i indexes the videos in ¥ and N is the number of videos in
V. Each video V; consists of RGB frames and the corresponding optic
flow, and is divided into P non-overlapping small clips, represented
as Vv, = {v,-,,}t‘p= \» Where ¢ is the clip index in a video. To construct
video-level data pairs, we split each video V; in half into two parts,

namely V;* = {v;,...v;p,} and V,.” = {v;p/241>---+V; p}. For each

half part of a video, we utilize a shared pre-trained I3D (Inflated 3D)
network as the backbone to extract its spatial-temporal features. The
backbone network, denoted as f(-), can be any suitable architecture
such as UntrimmedNet or I3D. It is important to note that the backbone
/() is independent of the specific architecture and the discussions on
additional choices for the backbone f(-) can be found in Section 1.2 of
the supplementary material. As a result, the spatial-temporal features
can be represented as X = f(V,) and X; b= g (V”), respectively, with
a shape of 2d x g, where d represents the feature size of each clip.

With the spatial-temporal features X¢ and X?, we further employ
two separate branches: g,(-) and g,(-). The g,(-) is used to obtain the
augmented horizontal feature pair, represented as Z{, € R'™C and
V4 ibh € R!XC. The g,(-) extracts the augmented Vertlcal feature pair
as, Z° € R™C and Z” € R!XC. Here, g,(-) and g,(-) are two-layer
nonhnear Multilayer Perceptron (MLP), and C is the number of clusters.

Horizontal CL. Building upon the horizontal pair augmentation, we
can acquire two horizontal feature matrices in the training batch,
represented as Z¢ € RV*C = {Zi‘fh}fil and Zb € RV*C = {Z” A
where N is the video amount in the batch. Each row vector, e.g., Z7,
or Z” in the two matrices, describes the video-level features for the
v1deo i. We consider horizontal feature vectors from the same video
as positive pairs and horizontal feature vectors from various videos as
negative pairs. The horizontal CL aims to maximize the similarities of
positive pairs, while minimizing the similarities of negative pairs.

For a specific video i, the positive pair comes from the same video,
represented as Z;, and Z ,» and the remaining 2N - 2 horizontal
feature vectors 1r1 the two horlzontal feature matrices are negative
pairs. Therefore, we define the horizontal CL loss as:

Z exp(d(Z,. Z),)/ )

i /lm[exp(d(z,h, @D/ h) +exp(d(Z]. I’.{h)/rh)]
exp(d(z”, VARIE! )
+
Z, 1jwlexpd(Z),. Z2 ) [ty) + expd(Z),. Z8 ) /7))
2

where 7, is the horizontal temperature hyperparameter, and d(-) is
cosine similarity. The loss encourages positive pairs to have higher
similarities and negative pairs to have lower similarities, thus obtaining
rich video-level information.

Vertical CL. In the vertical CL, the objective is to cluster videos into
different action clusters for learning common cluster-level features. The
vertical CL achieves this by maximizing the cluster similarity of positive
pairs and minimizing the cluster similarity of negative pairs.

More specifically, using the Z¢ and Zb in a training batch, we
first integrate them to form two vertlcal feature matrices, denoted
as Z¢ € RNVXC = {z¢ }¥, and zZb e RNXC = {Z}jv}l,zl. In each
feature matrix, the number of column corresponds to the predefined
cluster count C. In other words, each column feature vector represents
action cluster information that can be used to generate the pseudo-
labels of action categories for each video. Based on this, we sample
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the vertical feature vectors Y € Z¢ and Y’ € Z° with the same
column ¢ (cluster) as vertical positive pairs (see Fig. 3). Consequently,
the remaining 2C — 2 column vectors in the training batch serve as
vertical negative pairs. Both the positive and negative pairs are passed
through the vertical CL to learn the cluster-level representations with
different action categories. Overall, the vertical CL loss is written as:

exp(d(Y2, Y2 /z,)
T 1 lexpd(Ya. YO /1) + exp(d(¥e, Y1) [7,)]
exp(d(Y2, YH/7,)
T e[ Y ) /7)) + exp@(Y2, Y1) /7,)]
- MY - M)

C
1
Ly===— (I
v 2cc=1(°g

+ log

3)

where 7, is a temperature hyperparameter. Following [22], we em-
ploy M(-), which is the entropy of cluster assignment probabilities, to
prevent the network from assigning all videos to a cluster.

Finally, the total objective L ; of video-level CL includes both the
horizontal CL loss and vertical CL loss, as:

Lycp=L,+ L, @

By optimizing this objective, the video-level CL learns both video-level
and cluster-level features, aiding in the generation of the pseudo-labels
for videos.

3.1.3. Instance-level CL

After obtaining the video-level features and their corresponding
pseudo-labels through the video-level CL, we employ the instance-
level CL to discriminate between video-level features sharing the same
pseudo-label, denoted as action-related features, and those with differ-
ent action pseudo-labels, denoted as action-unrelated features. Through
proper training with instance-level CL, the action-related features are
encouraged to converge while simultaneously pushing away the action-
unrelated features, aiding in achieving coarse action localization.

Formally, given the ith video’s spatial-temporal features X; =
(X5, X ,.”} as input, we first use a temporal convolutional operator
Zembeq (") With a ReLU activation function to embed X; into the task-
specific feature space. This is represented as F; = g,,,.4(X;), where F;, €
R24%P is the task-specific embedded features, and d and P represent
the feature size of each clip and the number of the clips in a video,
respectively. Using the F;, the instance-level CL would extract the
action-related feature and the action-unrelated features more properly.
Next, to perform the instance-level contrastive training, we consider the
action-related features (such as F;, and F;.) with the same pseudo-
label/cluster ¢ as the positive pair, while the rest features F, ., with
different pseudo-labels/clusters ¢’ as the negative pairs. Thereby, the
instance-level CL loss L;.; can be given by,

CXP(E’CT . Fj,c/Tin)
Ljcp =—log = - )
eXp(FiA,c : F},E/Tin) + Zu eXp(Fi,c : Fu,c’/rin)

where 7;, is the temperature hyperparameter for the instance-level CL.
By optimizing the instance-level CL loss, the instance-level CL encour-
ages similar action features to have high similarity scores while reduc-
ing the similarity scores between action-related and action-unrelated
features. While the process helps to achieve coarse action localization,
it is still difficult to obtain fine-grained localization of action proposals,
e.g., a specific action category of a clip in a video.

3.1.4. Boundary-level CL

Since action and background boundary features in videos often
contain very similar information, current CL schemes are difficult to
capture and localize such ambiguous boundary changes efficiently.
Therefore, to achieve finer action-background boundary localization,
the HC-UTAL further introduces the boundary-level CL which focuses
on refined action-background boundary feature learning within per
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video. To address this, we first define two distinct boundaries in a
video: the action boundary and the background boundary. The former
denotes the boundary feature that transitions from the action to the
background, and the latter represents the feature that transitions from
the background to the action. Then, we devise the boundary-level
CL with two joint learning objectives, namely non-boundary feature
learning and boundary feature learning, for effectively identifying these
two types of features, leading to finer action proposal localization.
Non-boundary Feature Learning. The non-boundary feature learning
aims to extract the action and background non-boundary features from
per video. Action non-boundary features refer to easily distinguishable
action features that are not at the boundary, while background non-
boundary features refer to easily distinguishable background features
that are not at the boundary. As shown in Fig. 2, given the embedded
features F; for the video i, a linear classifier g, (-) is employed to
predict the Class Activation Sequence (CAS), denoted as S; = g.;(F)).
The CAS S; € RPXC contains C sets of action scores, each representing
an action category that occurs in all P clips of the ith video. Next, we
calculate the total action score of the video by summing the S;. To
separate the action non-boundary features A] from background non-
boundary features B, we sort the total action score and select the clip
corresponding to the top-K scores as the action non-boundary features
A!, and the bottom-K scores as the background non-boundary features
B]. To make the A} and B[ as far apart as possible, we introduce a

ranking loss as the non-boundary refinement loss L,.,, which is given

by:
| X
Loy = 2, (max(©.q = I1A7I) + 1B )? ®)
i=1
where || - || denotes a norm function, and ¢ is a predefined maximum

feature magnitude. This learning process effectively separates action
and background non-boundary features in a video feature space.
Boundary Feature Learning. With the obtained action and back-
ground non-boundary features, we further refine the hard-to-locate
boundary information, aiming to obtain more precise action proposal
positions. To achieve this, we devise a joint CL mechanism on the
action and background boundary feature learning, respectively, thus
obtaining a more robust and fine-grained boundary representation. In
particular, the action and background boundary features are initially
obtained using erosion and dilation operations [23]. We represent the
action boundary features as Af’, and the background boundary features
as BP, respectively. For the action boundary features A’, we select the
corresponding action non-boundary features A} as the positive pair,
while the background non-boundary features B as the negative pair.
Conversely, for the background boundary features BY, we select the
corresponding background non-boundary feature B! as the positive
pair, while the action non-boundary features A as the negative pair.
To effectively distinguish the Af.’ and B:’, we employ two InfoNCE
losses [11] for joint learning, so that we can differentiate between chal-
lenging action and background proposals. enenFor learning together,
we define the boundary refinement loss L, as:
N T AT
N ONS—  1
=1 exp(ADT - AT /7)) + X, exp(A)T - B] /7))

exp(B)T - Bl /7))
exp((BYY - B /) + X, exp(BN)T - A7 /7))

where 7, is a temperature hyperparameter in CL. To conform to the

@

+ log )

form of InfoNCE loss [11], we perform an averaging operation 6 on
AP and B?, respectively.

Overall, the total optimization objective L., of boundary-level CL
contains the non-boundary refinement loss L, and boundary refine-
ment loss L, as:

act + ijr (8)

Combining the two refinement objectives, the boundary-level CL achi
eves the finer action and background boundary features, allowing more
robust UTAL performance.

Lpcp =1L



Y. Liu et al.

3.2. HC-UTAL for unsupervised temporal action localization

In this section, we provide the detailed implementation of our
proposed HC-UTAL for UTAL.

3.2.1. Action category mapping

Using the video-level CL in HC-UTAL, we cluster the videos into
C clusters, each corresponding to a video pseudo-label. A mapping
process is applied to assign specific action categories to each video
pseudo-label. Since video pseudo-labels may contain multiple action
classes, the mapped action categories for a video are considered in a
multi-label manner. To perform the mapping process, we follow the
approach described in the previous work TCAM [8]. In this approach,
we count the occurrence of action class labels within each cluster. It
is worth to note that the number of action labels are only used for
mapping and are not involved in training the model. Suppose that
the most frequently occurring action class in cluster ¢ appears ¢ times,
we retain the action classes for each video in this cluster w.r.t the
occurrence times of that action classes > L. As a result, we obtain the
final action categories of each video with a one-hot vector, represented
as y; ., in a multi-label manner.

3.2.2. Action proposal localization

Since TAL involves both action category classification and proposal
localization, we need to further classify the action proposals into the
appropriate action categories, thus facilitating the final fine-grained
localization. Therefore, with the mapped action categories y;, and
the finer CAS via the boundary-level CL, we perform action proposal
localization with robustness and effectiveness below.

CAS Aggregation. Using the CAS S, = {s,v’c}cc:1 obtained by the
boundary-level CL, we aggregate the top-/ scores of CAS for each action
category y; ., and compute the average to obtain the per-action classi-
fication score g;, for each video i. The CAS aggregation is performed
as follows:

a, = %mast,-'c. (C)]
]

where s;, € R!¥P represents the corresponding action score for per
video. Following [15], we empirically set / = 5. The per-action classifi-
cation score g; . represents the confidence of the action class prediction
for the ith video.

Action Proposal Classification. To classify action proposals into the
corresponding action categories, a multi-label cross-entropy loss L,
is employed to optimize the classifier g, for multiple action class
prediction. The loss is defined as:

N
1
Lcls = _N ; zc: Yie 10g(pi¢c) (10)

where N is the number of videos, y;. represents the mapped action
(¢
labels, and p, , = ——bcicd
i p:,c ZS=1 exp (az.c)
class for the ith video.

is the predicted probability of the action

3.2.3. Overall learning objective for UTAL

In general, the total learning objective for UTAL is the summation
of the above-mentioned HC-UTAL loss Lyc_yr,4; and the multi-label
cross-entropy loss L.;,. Mathematically, the total loss L can be written
as:

cls*

L=Lys+Lycurar- 11)
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3.3. Inference pipeline

During inference, we first cluster and map the action classes, and
then employ a threshold 6,,,,, to select the predicted action class prob-
abilities p; . that exceed the threshold. With the selected action classes,
another threshold 6, is applied to the corresponding CAS values to
generate a set of localization proposals. Each proposal is represented
as (b,.e.,y.), where b, and e, indicate the start and end times of the
action class y,, respectively. Finally, non-maximum suppression (NMS)
is performed on all proposals to eliminate duplicate proposals. NMS
helps generate the final set of localized action segments by selecting the
most confident and non-overlapping proposals. Following these steps,
the proposed framework enables the effective localization of multiple
action proposals without any action annotations.

4. Experiments and analysis
4.1. Datasets

In this section, we provide comprehensive experimental results
on two large video-based TAL datasets, including THUMOS’14 [24],
ActivityNet v1.2 and ActivityNet v1.3 [25]. Both datasets consist of a
large number of untrimmed videos. In other words, these videos contain
action and non-action background clips.

THUMOS’14 [24]. THUMOS’14 includes 13,320 untrimmed videos.
The video duration is highly variable, each video may contain mul-
tiple action instances. For a fair comparison, we followed the pre-
vious methods [26,27] and utilized 413 videos for unsupervised or
weakly supervised temporal action localization. Among them, 200
videos are sourced from the validation set of the THUMOS’14 for train-
ing, while 213 videos are sourced from the test set of the THUMOS’14
for evaluation.

ActivityNet v1.2 and ActivityNet v1.3 [25]. ActivityNet v1.2 and
ActivityNet v1.3 are two different versions of the popular large-scale
action localization benchmark dataset. ActivityNet v1.2 contains a total
of 9682 videos, including 4819 videos in the training set, 2383 videos
in the validation set, and 2480 videos in the test set, covering 100
action categories. In contrast, ActivityNet v1.3 contains a total of
20,000 videos, including about 10,024 videos in the training set, about
4926 videos in the validation set, and 5044 videos in the test set, with
the action categories increased to 200 categories. For ActivityNet v1.2,
we use a training set of 4819 videos for training and evaluate on a
test set of 2480 videos. For ActivityNet v1.3, we train the model on a
training set of 10,024 videos and evaluate it on a validation set of 4926
videos.

4.2. Implementation details

4.2.1. Evaluation protocols

We evaluated our method with mean Average Precision (mAP) un-
der several Intersections over Union (IoU) thresholds, i.e., the standard
evaluation metrics for temporal action localization. Both datasets used
the benchmark code provided by ActivityNet for evaluation [25]. For
THUMOS’14, the threshold range used is from 0.1 to 0.7, and the
average mAP within this range is taken as the final metric. For Activi-
tyNet, the threshold range used is from 0.5 to 0.95, and the average
mAP within this range is taken as the final metric. In addition, we
employed the normalized mutual information (NMI) score and adjusted
rand index (ARI) to measure the clustering performance, which has
been widely used in clustering tasks. In addition, the baseline in our
work, is a typical two-stage framework using the traditional spectral
clustering algorithm [28] for action clustering and the classification loss

(L,,,) for action localization.
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Table 1
The key training parameters involved in this work.

Parameters Description of the parameters Values
d Tensor dimension of each clip 1024
7, The hyperparameter in the horizontal CL in Eq. (2) 0.4

7, The hyperparameter in the vertical CL in Eq. (3) 0.9

in The hyperparameter in the instance-level CL in Eq. (5) 0.07

q Predefined maximum feature magnitude in Eq. (6) 150
7 The hyperparameter in the boundary-level CL in Eq. (7) 0.07

4.2.2. Training details

The number of clips P in a video was set to 750, 50 for THUMOS’14
and ActivityNet, respectively. For training, we utilized the Adam opti-
mizer with an initialized learning rate of 0.0001. For clarification, other
key training parameters are shown in Table 1.

4.2.3. Inference details

For THUMOS’14 and ActivityNet, we set 6, to 0.2 and 0.1
to determine which action classes will be localized. We used multi-
ple thresholds for proposal generation. For THUMOS’14, we set 6,
to [0.325:0.375:0.025] and then performed non-maximum suppres-
sion (NMS) using a threshold of 0.55. For ActivityNet, we set 6,
to [0.0:0.105:0.015] and then performed non-maximum suppression
(NMS) using a threshold of 0.7.

4.3. Comparisons with the state-of-the-arts

4.3.1. Evaluation on THUMOS’14

Table 2 summarizes the results of the THUMOS’14 dataset for the
fully supervised, weakly supervised, and unsupervised TAL, respec-
tively, when the IoU threshold varies between 0.1 and 0.7. HC-UTAL
outperforms previous weakly supervised and unsupervised methods
in almost all IoU metrics on the THUMOS14 dataset. In the unsu-
pervised case, our method achieved favorable performance of 30.1%
mAP@0.5 and 37.4% mAP@Avg. When compared with the SOTA meth-
ods APSL [9] and FEEL [34], HC-UTAL achieves an absolute improve-
ment of 2.2% and 0.8% in average mAP and mAP at an IoU threshold
of 0.5, respectively. It demonstrates the effectiveness of our coarse-to-
fine method through a highly coupled learning process for unsupervised
temporal action localization. In the weakly supervised case, where
only weak annotations, i.e., action category labels were provided, our
method still achieved the best result of 43.6% mAP@Avg on THU-
MOS’14. Compared with FTCL [16] and P-MIL [31], our methods
are also better than theirs, implying that the HC-UTAL is still valid
for the weakly-supervised framework. This result is close to the fully
supervised TAL performance. In addition, Table 5 reports the results of
our HC-UTAL for action category clustering. We achieved good results
on two widely-used clustering metrics, ie., the adjusted rand index
(ARI) and normalized mutual information score (NMI), on THUMOS’14,
obtaining 0.705 on ARI and 0.860 on NMI, whereas APSL only obtained
0.639 on ARI and 0.821 on NMIL It shows that the highly coupled
learning process is also helpful for clustering.

4.3.2. Evaluation on ActivityNet v1.2 and ActivityNet v1.3

Table 3 displays the evaluation results on ActivityNet v1.2, compar-
ing the performance of various action localization methods, including
unsupervised, weakly supervised, and fully supervised approaches. Ob-
viously, our method also achieved state-of-the-art performance on the
ActivityNet1.2 datasets.

In the unsupervised case, where no annotations are available for the
videos, our method achieved a noteworthy 28.3% mAP@Avg, surpass-
ing the performance of some other unsupervised methods. Compared
with the SOTA methods APSL [9], FEEL [34], and UGCT [35], our
method achieved absolute gains of 0.7%, 3.8%, and 5.6% in terms of
average mAP, respectively. This result indicates that our method can
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successfully localize actions in videos even without any explicit super-
vision. In the weakly supervised case, our method outperformed the
state-of-the-art methods. Compared with the SOTA methods APSL [9]
and CASE [36], we achieved absolute gains of 1.0% and 1.3% in terms
of average mAP, respectively. This improvement signifies the effec-
tiveness of our approach in leveraging limited supervision to localize
actions in videos accurately.

As shown in Table 4, we conducted additional evaluation exper-
iments on the ActivityNet v1.3 dataset to further demonstrate the
effectiveness of our proposed method in both unsupervised and weakly
supervised settings. Under the weakly supervised scenario, our method
achieves a notable performance of 28.9% mAP@Avg, surpassing other
SOTA methods. This result highlights our approach’s ability to ac-
curately localize actions in videos with limited supervision. In the
unsupervised setting, our method also exhibited a significant advan-
tage, with an absolute gain of 2.3% mAP@Avg compared to TSCN [33].
In summary, our method consistently delivers strong performance in
action localization, whether under limited supervision or in fully unsu-
pervised conditions.

Additionally, as shown in Table 5, we evaluated the clustering
performance of our method on ActivityNet v1.2. The ARI obtained was
0.692, indicating a high degree of agreement between the predicted
clusters and the ground truth. Moreover, the NMI yielded a value
of 0.894, which signifies a moderate level of agreement between the
predicted clusters and the ground truth.

4.4. Ablation studies

4.4.1. Effect of hierarchical contrastive learning

Table 6 presents the results of ablation studies conducted on the
THUMOS’14 dataset in the unsupervised case, aiming to analyze the
contribution of each hierarchical contrast loss. Introducing the video-
level CL loss (L, ;) to replace the traditional spectral clustering algo-
rithm substantially improved the performance by 3.8% in mAP@0.5.
This improvement can be attributed to the fact that video-level CL en-
ables pseudo-labels and action-related features to be learnt interactively
in a high-coupling manner, resulting in enhanced action localization.
As shown in Table 6, the integration of the loss L;.; improved the
performance by 3.1%, and further addition of the loss Ly, resulted in
an increase of 8.1%. Finally, using all the losses (L.;,, Ly ¢y, Licp, and
Lgc;) in combination with dynamic weighting (DWA) for training the
action localization model yielded the best result of 30.1% in mAP@0.5.
This demonstrates the effectiveness of incorporating all losses and
employing dynamic weighting to optimize the model’s performance.

4.4.2. Effect of different clustering methods

The subsection presents the results of various clustering methods
applied to the THUMOS’14 dataset. The performance metrics, such as
adjusted rand index (ARI) and normalized mutual information (NMI),
are reported in Table 7. It can be seen that our video-level CL-based
clustering method with integrated high-coupling learning performs
much better than other clustering methods. Video-level CL achieved
0.70 on ARI, an improvement of 0.31 over spectral clustering. More-
over, video-level CL achieved 0.86 on NMI, which is 0.17 higher
than spectral clustering. This suggests that the best clustering per-
formance can be achieved by using video-level CL, thanks to more
effective feature interactions during the integrated hierarchical CL pro-
cess. Furthermore, from the localization results, it can be observed that
video-level CL achieved the best performance with mAP@Avg of 37.4%,
indicating that video-level CL produces more accurate pseudo-labels for
achieving better localization results.

In addition, we have expanded our analysis of the impact of various
data augmentation in horizontal-level and vertical-level CL, respec-
tively. The results are shown in Table 8. At the horizontal level, when
only horizontal pair augmentation is used, the ARI is 0.10 and the
NMI is 0.37; meanwhile, in vertical-level, when only vertical pair
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Table 2
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Comparison of state-of-the-art methods on the THUMOS’14 dataset in fully supervised, weakly supervised, and unsupervised learning settings,
respectively. We denote the fully supervised, weakly supervised, and unsupervised as FS, WS, and US, respectively. The best results are in bold.

*indicates the results obtained by reproducing the code.

Supervision Method mAP@t-IoU (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg
S-CNN(2016) [6] 47.7 43.5 36.3 28.7 19 - - -
FS SSN(2017) [5] 66 59.4 51.9 41 29.8 - - -
GTAN(2019) [12] 69.1 63.7 57.8 47.2 38.8 - - -
W-TALC(2018) [3] 55.2 49.6 40.1 31.1 22.8 - 7.6 -
CMCS(2019) [26] 57.4 50.8 41.2 32.1 23.1 15 7 32.4
DGAM(2020) [27] 60 54.2 46.8 38.2 28.8 19.8 11.4 37
TCAM(2020) [8] - - 46.9 38.9 30.1 19.8 10.4 -
HAM-Net(2021) [14] 65.9 59.6 52.2 43.1 32.6 21.9 12.5 41.1
SAPS(2021) [29] 61.7 56 50 38.8 28.8 18.7 9.5 -
IONet(2021) [30] 58.0 50.3 41.1 32.3 24.0 15.1 7.2 -
WS CoLA(2021) [15] 66.2 59.5 51.5 41.9 32.2 22 13.1 40.9
EGANet(2022) [2] 64.5 58.4 50.0 41.4 31.5 21.0 10.7 -
FTCL(2022) [16] 69.6 63.4 55.2 45.2 35.6 23.7 12.2 43.6
P-MIL(2023)*[31] 65.3 61.3 53.7 45.0 36.5 24.2 12.8 42.8
A-TSCN(2023) [32] 65.3 59.0 52.1 42.5 33.6 23.4 12.7 329
CAM(2023) [1] 64.7 57.6 49.2 38.0 31.0 22.9 12.1 39.3
APSL(2023) [9] 69.1 62.4 53.7 43.6 33.6 23.8 12.8 42.7
Ours 69.7 63.5 54.8 44.9 35.6 24.4 12.5 43.6
TCAM(2020) [8] - - 39.6 329 25 16.7 8.9 -
TSCN(2020) [33] 57.1 51.6 43.9 35.3 26.0 15.7 6.0 33.7
us FEEL(2023) [34] - - - - 29.3 22.6 11.5 -
APSL(2023) [9] 57.7 52.4 44.1 35.9 27.9 18.5 10 35.2
Ours 60.8 55.1 47.2 38.3 30.1 20.2 10.2 37.4
Table 3

Comparison of state-of-the-art methods on the ActivityNet v1.2 dataset in fully supervised, weakly supervised, and unsupervised learning settings,
respectively. We denote fully supervised, weakly supervised, and unsupervised as FS, WS, and US, respectively. The best results are in bold. *

indicates the results obtained by reproducing the code.

Supervision Method mAP@t-IoU (%)
0.5 0.75 0.95 Avg
FS SSN(2017) [5] 41.3 27 6.1 26.6
DGAM(2020) [27] 41 23.5 5.3 24.4
SAPS(2021) [29] 38.7 23.2 5.7 -
CoLA(2021) [15] 42.7 25.7 5.8 26.1
EGANet(2022) [2] 41.3 24.7 5.5 25.4
CAM(2023) [1] 429 25.5 9.3 25.9
WS UGCT(2023) [35] 43.1 26.6 6.1 26.9
P-MIL(2023)*[31] 44.2 26.1 5.3 26.5
A-TSCN(2023) [32] 39.6 25.1 5.8 25.6
ASE(2023) [36] 43.8 27.2 6.7 27.9
APSL(2023) [9] 44.3 28.5 6.2 28.2
SRHN(2024) [37] 44.3 26.7 5.3 26.8
Ours 46.3 29.4 6.4 29.2
TCAM(2020) [8] 35.2 21.4 3.1 21.1
TSCN(2020) [33] 22.3 13.6 2.1 13.6
us UGCT(2023) [35] 37.4 23.8 4.9 22.7
FEEL(2023) [34] 38.0 25.6 3.4 24.5
APSL(2023) [9] 43.7 28.1 5.8 27.6
Ours 44.1 29.1 6.3 28.3

augmentation is used, the ARI is 0.28 and the NMI is 0.60;. We con-
ducted experiments on the THUMOS’14 dataset to evaluate the effects
of horizontal CL and vertical CL on model performance, demonstrating
how various augmentation strategies can improve overall effectiveness.

4.5. Visualization and qualitative results

4.5.1. Visualization on the hierarchical CL

To explore the role of contrastive learning at each level, we visual-
ized the obtained CAS score of the ThrowDiscus action category using
different CL levels in HC-UTAL, as shown in Fig. 4. From the figure, the
blue rectangles represent the ground truth of the ThrowDiscus action
category in the video. The lines with different colors represent the CAS
scores obtained by the baseline and different CL levels, respectively.

The figure illustrates that as the hierarchical CL components are added,
the action score gradually decreases in the background region outside
the ground truth. This implies that adding hierarchical CL refines
the boundary regions and leads to more accurate localization of the
ThrowDiscus action. In summary, the visualization results demonstrate
the effectiveness of incorporating hierarchical and highly-coupling con-
trastive learning in improving the localization and refinement of ac-
tion boundaries, particularly in the difficult-to-locate boundaries of
background regions.

4.5.2. Visualization of clustering results
Fig. 5 shows the results of clustering visualization using the tra-
ditional spectral clustering method and our proposed video-level CL
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Fig. 4. Visualization on the CAS scores of the action category ThrowDiscus via CL of different levels. Obviously, adding hierarchical contrastive learning refines the boundary

regions, leading to more accurate localization in the category ThrowDiscus.

Table 4

Comparison of state-of-the-art methods on the ActivityNet v1.3 dataset in fully
supervised, weakly supervised, and unsupervised learning settings, respectively. We
denote fully supervised, weakly supervised, and unsupervised as FS, WS, and US,
respectively. The best results are in bold.

Supervision Method mAP@t-IoU (%)
0.5 0.75 0.95 Avg
FS SSN(2017) [5] 43.26 28.7 5.6 28.28
IONet(2021) [30] 34 20.3 5.0 22.2
EGANet(2022) [2] 35.4 22.5 4.5 22.4
DCC(2022) [38] 38.8 24.2 5.7 24.3
UGCT(2023) [35] 41.2 24.4 5.9 25.5
P-MIL*(2023) [31] 41.8 25.4 5.2 25.5
WS A-TSCN(2023) [32] 37.9 23.1 5.6 23.6
CASE(2023) [36] 43.2 26.2 6.7 26.8
SRHN(2024) [37] 41.7 26.1 6.1 26.2
SPCC-Net(2024) [39] 41.0 25.0 6.4 25.4
ISSF(2024) [40] 39.4 25.8 6.4 25.8
Ours 45.8 29.8 5.9 28.9
Us TSCN(2020) [33] 25.9 16.2 3.8 16.3
Ours 29.4 19.0 4.3 18.6
Table 5

Comparison of clustering results on the THUMOS’14 dataset and the ACTIVITYNET
V1.2 dataset, respectively. The best results are in bold.

Dataset Method ARI NMI
N APSL(2023) [9] 0.639 0.821
THUMOS'14 Ours 0.705 0.86
APSL(2023) [9] 0.574 0.795
ACTIVITYNET V1.2 Ours 0.692 0.894

Table 6
Ablation study of different contrast losses on the THUMOS’14 dataset in the unsuper-
vised case. The best results are in bold.

Baseline Lyc; Licr Lper Dynamic weighting mAP@0.5 (%)
v 13.8
v v 17.6
v v v 20.7
v v v v 28.8
4 v v v v 30.1

method, respectively. We performed the clustering for generating ac-
tion pseudo-labels on the THUMOS’14 dataset and used the t-SNE
feature maps for visualization. Fig. 5(a) shows the feature map for the
spectral clustering, and (b) shows the feature map for the video-level
CL. It can be observed that the clusters obtained by video-level CL are
more compact than the spectral clustering, with smaller cluster class

Table 7

Comparison of different clustering methods on the THUMOS’14 dataset.
Method ARI NMI mAP@Avg (%)
Kmeans 0.04 0.39 28.6
Agglomerative 0.18 0.58 317
Spectral clustering 0.39 0.69 33.5
Separated learning with Video-level CL 0.63 0.82 34.4

Integrated learning with Video-level CL  0.70 0.86 37.4

Table 8
The impact of horizontal CL and vertical CL in video-level CL on the clustering
performance of the model.

Horizontal CL Vertical CL ARI NMI
v 0.10 0.37

v 0.28 0.60
v v 0.70 0.86

distances for each cluster, indicating the advantages of video-level CL
in clustering.

4.5.3. Visualization of localization results

Fig. 6(a) and (b) show the localization results of single actions
on the THUMOS’14 dataset under unsupervised conditions by differ-
ent methods. Blue represents the true action region, green represents
the localization results of the baseline method without hierarchical
contrastive learning, gray shows the localization results after adding
video-level CL, purple shows the results after adding both video-level
and instance-level CL, and orange shows the effects after adding video-
level, instance-level, and boundary-level CL. As shown in Fig. 6(a) and
(b), with the introduction of three-level CL, the localization boundary
of single actions gradually becomes clearer, highlighting the key role
of hierarchical CL in boundary localization. To further demonstrate
the importance of hierarchical CL in multi-action scenarios, we per-
form boundary localization on instances of multiple action categories.
Fig. 6(c) shows that with the addition of three-level CL, the bound-
aries of multi-action localization also become clearer, indicating that
hierarchical CL also plays an important role in multi-action boundary
localization.

In Fig. 7, we visualized the extracted task-specific embedded fea-
tures F; with different settings by using the t-SNE on the THUMOS’14
dataset, where blue represents background and orange represents ac-
tion. As shown in Fig. 7(a), one can see that the task-specific embedded
features F; extracted by the baseline contain lots of confusing informa-
tion between action and background features. As shown in Fig. 7(b),
after adding video-level CL to the baseline, there are still many con-
fusing pieces of information existing between action and background.
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(a) Spectral clustering

(b) video-level CL

Fig. 5. Visualization for video-level feature clustering on the THUMOS’14 dataset. (a) The feature map learned by the spectral clustering, and (b) the feature map learned by our
video-level CL. Obviously, the clusters obtained by video-level CL are more compact than spectral clustering, with smaller cluster class distances for each cluster.
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Fig. 6. Visualization results on THUMOS’14 for videos with a single action category or multiple action analogies in the unsupervised case. Adding hierarchical CL components

gradually improves the clarity and accuracy of action instance localization. The localization results become clearer and more refined, especially in locating the boundaries of
actions. The red dotted boxes represent incorrect localization results, while the green dotted boxes represent the corresponding correct localization results of our HC-UTAL. Among
them, (a) represents the PoleVault action, (b) represents the VolleyballSpiking action, (c) represents the SoccerPenalty and HammerThrow action, and (d) represents the failure cases
Billiards action. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

One possible analysis for this is that video-level CL may contribute
more to clustering improvement, but it does not provide significant
assistance in distinguishing between backgrounds and actions with
clarity. In comparison to Fig. 7(b), 7(c) demonstrates that after adding
instance-level CL, there is some separation between background and
action. However, there are still some confusions present between action
and background due to the challenge boundary information. Further-
more, as shown in Fig. 7(d), the addition of boundary-level CL results
in a clear separation between action and background in F; due to
fully considering boundary learning. This separation allows for better
identification and recognition of action and background.

4.5.4. Visualization of failure cases

As shown in Fig. 6(d), despite the effectiveness of our method, we
found that there are still some rooms in which our HC-UTAL could
be improved. Firstly, some extremely minor visual changes remain
challenging for current methods to capture, which has an impact on
the methods’ performance. Additionally, due to the limited information
provided by unsupervised learning, we need to pre-define the number
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of action categories in our method, which affects the performance of
real-world UTAL applications.

5. Conclusion

In this work, we propose a novel and end-to-end hierarchical con-
trastive learning framework, called HC-UTAL, for robust UTAL. Specifi-
cally, HC-UTAL contains three-hierarchy contrastive learning (CL), ie.,
video-level CL, instance-level CL, and boundary-level CL, for effectively
mining multi-level, high-coupling semantic features related to actions
in untrimmed videos. First, we introduce video-level CL for video-
level feature clustering to generate video pseudo-labels. Then, with the
generated pseudo-labels, we introduce instance-level CL to learn action-
related and action-unrelated features, making the action features with
the same categories closer together. Next, we further design boundary-
level CL on more fine-grained action-background boundary semantic
representation learning, thus improving the finer action localization
performance. By training the coarse-to-fine CL for high-coupling feature
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(c) F; learned by baseline+VCL+ICL

(d) F; learned by HC-UTAL

Fig. 7. Comparison of the distributions of action, background with different settings using the t-SNE visualization, where blue represents background and orange represents action.
(a) the F, learned by the baseline, (b) the F; learned by baseline and video-level CL, (c) the F; learned by baseline, video-level CL and Instance-CL, (d) the F; learned by HC-UTAL.
Obviously, owing to considering feature interaction in three-level CL, our HC-UTAL achieves a more discriminatory distribution of features, even the easily confused action and
background boundary features, thus obtaining finer action-background boundary localization. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

learning and interaction via adaptation weighting, HC-UTAL can ob-
tain more fine-grained action semantic representations, thus improving
the performance of both action proposal classification and localiza-
tion. Extensive experiments conducted on the THUMOS’14, ActivityNet
v1.2, and ActivityNet v1.3 datasets demonstrate that our method out-
performs the baseline method by a significant margin and achieves
state-of-the-art performance. In future work, I will introduce physic-
informed prior knowledge as prompts into our framework to explore
more comprehensive action information for UTAL task in unconstrained
environment.
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